
SPECIAL ISSUE

Real-time detection of lines using parallel coordinates and CUDA

Jiřı́ Havel • Markéta Dubská • Adam Herout •

Radovan Jošth

Received: 8 August 2011 / Accepted: 20 November 2012

� Springer-Verlag Berlin Heidelberg 2012

Abstract The Hough transform is a well-known and

popular algorithm for detecting lines in raster images. The

standard Hough transform is rather slow to be usable in real

time, so different accelerated and approximated algorithms

exist. This study proposes a modified accumulation scheme

for the Hough transform, using a new parameterization of

lines ‘‘PClines’’. This algorithm is suitable for computer

systems with a small but fast read-write memory, such as

today’s graphics processors. The algorithm requires no

floating-point computations or goniometric functions. This

makes it suitable for special and low-power processors and

special-purpose chips. The proposed algorithm is evaluated

both on synthetic binary images and on complex real-world

photos of high resolutions. The results show that using

today’s commodity graphics chips, the Hough transform

can be computed at interactive frame rates, even with a

high resolution of the Hough space and with the Hough

transform fully computed.

Keywords Line detection � Parallel coordinates �
CUDA implementation � Hough transform �
Real-time detection

1 Introduction

The Hough transform is a well-known tool for detecting

shapes and objects in raster images. Originally, Hough [11]

defined the transformation for detecting lines; later it

was extended for more complex shapes, such as circles,

ellipses, etc., and even generalized for arbitrary patterns [2].

When used for detecting lines in 2D raster images, the

Hough transform is defined by a parameterization of lines:

each line is described by two parameters. The input image

is preprocessed and for each pixel which is likely to belong

to a line, voting accumulators corresponding to lines which

could be coincident with the pixel are increased. Next, the

accumulators in the parameter space are searched for local

maxima above a given threshold; such accumulators cor-

respond to likely lines in the original image. The Hough

transform was formalized by Princen et al. [20] and

described as an hypothesis testing process.

The following section reviews existing parameteriza-

tions of lines suitable for a fast and/or precise detection of

lines. Also, different acceleration approaches are men-

tioned as the background of the work to be presented here.

The classical Hough transform (based on any parame-

terization) has some advantages over the accelerated and

approximated methods (it does not introduce any further

detection error and it has a low number of parameters and,

therefore, usually requires less detailed application-specific

fine-tuning). This makes the real-time implementation of

the Hough transform desirable. This study presents an

algorithm for real-time detection of lines based on the

PClines parameterization of lines.

The algorithm proposed in this study uses a modified

strategy for accumulating the votes in the array of accu-

mulators in the Hough space. The strategy was designed to

meet the nature of today’s graphics chips (GPUs) and other

J. Havel � M. Dubská (&) � A. Herout � R. Jošth

Graph@FIT, Brno University of Technology,

Bozetechova 2, Brno 612 66, Czech Republic

e-mail: idubska@fit.vutbr.cz

J. Havel

e-mail: ihavel@fit.vutbr.cz

A. Herout

e-mail: herout@fit.vutbr.cz

R. Jošth

e-mail: ijosth@fit.vutbr.cz

123

J Real-Time Image Proc

DOI 10.1007/s11554-012-0303-4

special-purpose computational platforms. The implemen-

tation achieves real-time performance at executing the

‘‘full’’ Hough transform on the GPU.

The PClines parameterization is reviewed in Sect. 3. The

modified HT accumulation algorithm is presented in Sect. 4

of the paper. Section 5 presents the experiments comparing

the commonly used variant of the Hough transform with

the implementation of the algorithm run on a GPU. The

results show that the GPU implementation based on

PClines achieves such a performance which allows running

the Hough transform with a high-resolution accumulator

space in real time. Section 6 concludes the study and

proposes directions for future work.

2 Background

Hough [11] parameterized the lines by their slope and

y-axis intercept. Using this parameterization, the Hough

space must be infinite and the same is true for any point-

to-line mapping (PTLM) where a point in the source image

corresponds to a line in the Hough space, and a point in the

Hough space represents a line in the x–y image space [3].

However, for any PTLM, a complementary PTLM can be

found so that the two mappings define two finite Hough

spaces containing all lines possible in the x–y image space.

Some naturally bounded parameterizations exist, such as

the very popular h�. parameterization introduced by Duda

and Hart [7], which is based on the line equation in the

normal form. Other bounded parameterizations were

introduced by Wallace [26], Natterer [15], Eckhardt and

Maderlechner [8]. As the line’s parameters, intersections

with a bounding rectangle or circle were used, together

with angles defined by these intersections and the input

point.

The majority of currently used implementations seem

to be using the h�. parameterization [7]—for example,

the well-known OpenCV library1 implements several

variants of line detectors based on the h�. parameteri-

zation and none other. In this parameterization, for each

input pixel, a sinusoid curve must be rasterized which

makes this method very computationally complex and

not suitable for GPU implementation (especially without

GP-GPU capabilities such as CUDA or OpenCL). That is

why several research groups invested great effort to deal

with these undesirable properties. Different methods focus

on special data structures, non-uniform resolution of the

accumulation array or special rules for picking points

from the input image.

O’Rourke and Sloan [18] developed two special data

structures: dynamically quantized spaces (DQS) [17] and

dynamically quantized pyramid (DQP) [17]. Both these

methods use splitting and merging cells of the space rep-

resented as a binary tree, or possibly a quadtree. After

processing the whole image, each cell contains approxi-

mately the same number of votes; this leads to a higher

resolution of the Hough space of accumulators at locations

around the peaks.

A typical method using special picking rules is the

Randomized Hough Transform (RHT) [27]. This method is

based on the idea that each point in an n-dimensional

Hough space of parameters can be exactly defined by an

n-tuple of points from the input raster image. Instead of

accumulation of a hypersurface in the Hough space for

each point, n points are randomly picked and the corre-

sponding accumulator in the parameter space is increased.

The advantages of this approach are mostly its rapid

speedup and small storage. Unfortunately, when detecting

lines in a noisy input image, the probability of picking two

points from the same line is small, decreasing the proba-

bility of finding the true line.

Another approach based on repartitioning the Hough

space is represented by the Fast Hough Transform (FHT)

[14]. The algorithm assumes that each edge point in the

input image defines a hyperplane in the parameter space.

These hyperplanes recursively divide the space into hy-

percubes and perform the Hough transform only on the

hypercubes with votes exceeding a selected threshold. This

approach reduces both the computational load and the

storage requirements.

Using principal axis analysis for line detection was

discussed by Rau and Chen [21]. Using this method for line

detection, the parameters are first transferred to a one-

dimensional angle-count histogram. After transformation,

the dominant distribution of image features is analyzed,

with searching priority in peak detection set according to

the principal axis.

The Hough transform also provides space for parallel

implementations using special hardware such as a distrib-

uted memory multiprocessor [25], graphics hardware [24],

pyramid multiprocessors [1] or reconfigurable architectures

[19].

Recently, Dubská et al. [6] presented PClines—a new

parameterization of lines based on parallel coordinates.

Since this parameterization and the parallel coordinates are

not common knowledge, we will give a detailed description

of that parameterization (which is fundamental for the

algorithm presented in this study) in the following section.

3 PClines: line detection using parallel coordinates

Parallel coordinates (PC) were invented in 1885 by

d’Ocagne [4] and they were further studied and popularized by1 http://opencv.willowgarage.com.

J Real-Time Image Proc

123

http://opencv.willowgarage.com

Inselberg [12]. The coordinate system used for repre-

senting geometric primitives in parallel coordinates is

defined by mutually parallel axes. Each N-dimensional

vector is represented by (N - 1) lines connecting the axes

(see Fig. 1). In this text, we will be using an Euclidean

plane with a u–v Cartesian coordinate system to define

positions of points in the space of parallel coordinates.

For defining these points, a notation ðu; v;wÞ
P

2 will be

used for homogeneous coordinates in the projective space

P
2 and ðu; vÞ

E
2 will be used for Cartesian coordinates in

the Euclidean space E
2:

In the two-dimensional case, points in the x–y space are

represented as lines in the space of parallel coordinates.

Representations of collinear points intersect at one point—

the representation of a line (see Fig. 2).

Based on this relationship, it is possible to define a

point-to-line mapping between the original x–y space and

the space of parallel coordinates. For some cases, such as

line ‘ : y ¼ x; the corresponding point ‘ in the parallel

coordinates lies in infinity (it is an ideal point) and the

points on this line are represented by the parallel hori-

zontal lines. Projective space P
2 (contrary to the Euclid-

ean E
2 space) provides coordinates for these special

cases. A relationship between line ‘ : axþ byþ c ¼ 0

(denoted as [a, b, c]) in cartesian coordinates and its

representing point ‘ in parallel coordinates can be defined

by mapping:

‘ : ½a; b; c� ! ‘ : ðdb;�c; aþ bÞ
P

2 ; ð1Þ

where d is the distance between parallel axes x0 and y0.

3.1 Parameterization ‘‘PClines’’ for line detection

This section gives an overview of the ‘‘PClines’’ parame-

terization introduced by Dubská et al. [6]. The text is kept

very concise; for more information, the original paper

should be consulted. In the following text, we will use the

intuitive slope–intercept line equation ‘ : y ¼ mxþ b;

where m defines the slope of the line and b the y-coordinate

of an intersection between the line and y-axis. Using this

parameterization, the corresponding point ‘ in the parallel

space has coordinates ðd; b; 1� mÞ
P

2 : The line’s repre-

sentation ‘ is between the axes x0 and y0 if and only if the

slope is negative, i.e., �1\m\0: For m ¼ 1; ‘ is an ideal

point (a point in infinity). For horizontal lines (m = 0), ‘

lies on the y0-axis, and for vertical lines (m ¼ �1), ‘ lies

on the x0-axis. The system defined by parallel axes x0, y0 is

further referred as straight (S) space.

The representations of the lines with a positive slope lie

in an infinite area outside the space between axes x0, y0. To

enclose also these representations to a finite part, we pro-

pose a twisted (T) system x0, -y0, which is identical to the

straight space, except that the y0-axis is inverted. In the

twisted space, ‘ is between the axes x0 and -y0 if and only

if 0\m\1: By combining the straight and twisted

spaces, the whole TS plane can be constructed, as shown in

Fig. 3.

Figure 3 (left view) shows the original x–y image with

three points A, B, and C and three lines ‘1; ‘2; and ‘3

coincident with the points. The origin of x–y is placed into

the middle of the image for the convenience of the figures

and the right view depicts the corresponding TS space. It

should be noted that a finite part of the u–v plane sufficient

for representing all possible lines in the bordered input

image is defined as follows:

�d� u� d;

�max
W

2
;
H

2

� �
� v�max

W

2
;
H

2

� �
;

ð2Þ

where W and H are the width and height of the input raster

image, respectively.

Any line ‘ : y ¼ mxþ b is now represented either by

point ‘S in the straight space or by ‘T in the twisted space

of the u–v plane:

‘S ¼ðd; b; 1� mÞ
P

2 ; �1�m� 0;

‘T ¼ð�d;�b; 1þ mÞ
P

2 ; 0�m�1:
ð3Þ

Fig. 1 Representation of a 5-dimensional vector in parallel coordi-

nates. The vector is represented by its coordinates C1,..., C5 on axes

x1

0
,..., x5

0
, connected by a complete polyline (composed of 4 infinite

lines)

Fig. 2 Three collinear points in parallel coordinates: (left) Cartesian

space and (right) space of parallel coordinates. Line ‘ is represented

by point ‘ in parallel coordinates

J Real-Time Image Proc

123

Consequently, any line ‘ has exactly one image ‘ in the TS
space; except for cases that m = 0 and m ¼ �1; when ‘

lies in both spaces either on y0- or x0-axis. That allows the

T and S spaces to be ‘‘attached’’ one to another. Figure 3

illustrates the spaces attached along the x0-axis. Attaching

also the y0- and -y0-axes results in an enclosed Mobius

strip.

Equation (3) defines line-to-point mapping which can be

used as a parameterization for the Hough transform. In this

case, the TS space is used as an accumulator space, as

depicted in Algorithm 1.

The space TS is discretized directly according to Eq.(2);

other discretizations—denser or sparser—would be possi-

ble by just linearly mapping the u and v coordinates used in

the algorithm. The condition used in step 3 is application

specific and it typically involves an edge detection operator

and thresholding. The lines rasterized in steps 4 and 5, in

fact, constitute a two-segment polyline defined by three

points: ð�d;�yÞ; ð0; xÞ; ðd; yÞ; where ð�d;�yÞ and (0, x)

are vertices of the line accumulated in the T half and (0, x)

and (d, y) are vertices of the line accumulated in the S half.

Step 8 scans the space of accumulators S for local maxima

above a given threshold—this is a standard Hough trans-

form step. The line’s parameters m–b are computed by the

functions m(u) and b(u, v) based on the u and v coordinates

of the point in the TS space using Eq. (1); any other

parameterization of lines can be the output of the algorithm.

Step 8 of the pseudocode looks for local maxima above

a given threshold in the TS space. Usually, a small

neighborhood (3� 3; 5� 5 or 7� 7 in cases of high res-

olution of the Hough space) is used for detecting the local

maxima. The accumulator value must be above a given

threshold to be considered for a ‘‘high local maxima’’. The

threshold is another input parameter of the algorithm, but

since it does not influence the algorithm’s structure, it is

used silently by step 8 for simplicity of the algorithmic

notation.

4 Real-time line detection algorithm using PClines

and CUDA

The key characteristic of Algorithm 1 in the previous

section is that steps 4 and 5 must rasterize the lines in the T
and S spaces (or the half-period of the sinus curve in the

case of the h�. parameterization) and increment the cor-

responding accumulators in the Hough space. In some

systems, such a large random-access read-write memory

might be expensive or even not available at all.

This section presents an algorithm that overcomes this

limitation and which is suitable for graphics processors and

other special-purpose or embedded systems. It builds upon

an algorithm recently published by the authors of this

article [13]. The principle of these algorithms can work

with other line parameterizations as well.

4.1 Hough transform on a small read-write memory

of accumulators

The classical Hough transform accesses sparsely a rela-

tively large amount of memory. This behavior can diminish

the effect of caching. On CUDA and similar architectures,

this effect is even more significant, as the global memory is

not cached. To achieve real-time performance, the memory

requirements must be limited to the shared memory of a

multiprocessor (typically 16 kB).

Algorithm 2 shows the modified Hough transform

accumulation procedure. The key difference from Algo-

rithm 1 is the actual size of the Hough space actively used

at a time. The new algorithm stores only n� ðvmax � vminÞ
accumulators, where n is the neighborhood size required

for the maxima detection. Values vmin and vmax define the

discretization of the Hough space (or more precisely TS
space) in the vertical v dimension (2); vmax � vmin is the

resolution in this dimension. The borders in the horizontal

dimension u are 1 and umax.

Fig. 3 Left Original x–y space and right its PClines representation,

the corresponding TS space. Another example of the TS space can be

found in Fig. 14

J Real-Time Image Proc

123

First, the detected edges are stored in a set P (line 1).

Then, first n columns of the Hough space are computed by

lines 2–7. The memory necessary for containing the n

columns is all the read-write random-access memory

required by the algorithm, and even for high resolutions of

the Hough space, the buffer of n columns fits easily in the

shared memory of the GPU multiprocessors.

S(u, v) is the discretized accumulator space – a buffer

which is zeroed (lines 2 and 14), incremented (lines 5 and

16) and searched for maxima (line 10). Function v(u, x, y)

computes the v coordinate based on the u coordinate and

the point to be accumulated (x, y):

u 2 T ; vðu; x; yÞ ¼ ðx� yÞu
umax=2

þ y;

u 2 S; vðu; x; yÞ ¼ ðy� xÞu
umax=2

þ x;

ð4Þ

In the main loop (lines 9–18), for every column of the

Hough space, the maxima are detected (line 10), the

accumulated neighborhood is shifted by one column (lines

11–13), and a new column is accumulated (lines 14–17);

please refer to Fig. 4 for an illustration of the algorithm.

Thus, only the buffer of n columns is being reused. The

memory shift can be implemented using a circular buffer of

lines to avoid data copying. Also, in the actual

implementation, pixels of one column follow each other

in the memory; this can be viewed as if the image was

transposed.

In the pseudocode, maxima are not detected at the

edges of the Hough space (i.e., when u 2 f1; . . .; dn
2
eg[

fumax � dn2e; . . .; umaxg). Eventual handling of the maxima

detection at the edge of the Hough space does not change

the algorithm structure, but it would unnecessarily com-

plicate the pseudocode. Two solutions exist—either copy-

ing the border data or rasterizing necessary parts of the

lines outside the Hough space. Both approaches perform

similarly and their implementation is straightforward.

On CUDA, the threads in a block can be used for pro-

cessing the set of edges P (lines 15–17 and 4–6) in parallel,

using an atomic increment of the shared memory so as to

avoid read-write collisions. To use all the multiprocessors

of the GPU, the loop on line 9 is broken to a number (e.g.,

90 is suitable for current NVIDIA GeForce graphics chips)

of sub-loops processed by individual blocks of threads.

The algorithm as described above uses exactly

n� ðvmax � vminÞ memory cells, typically 16-bit integer

values. In cases where the runtime system has a higher amount

of fast random-access read-write memory, this memory can

be used fully; instead of accumulating one column of the

Hough space (lines 15–17 of the algorithm), several col-

umns are processed at a time, and more than one column is

searched for maxima by line 10. This leads to a further

speedup by reducing the number of steps carried out by the

loop over u (line 9).

4.2 Harnessing the edge orientation

O’Gorman and Clowes [16] came up with the idea not to

accumulate values for each h; but just one value instead.

Fig. 4 Illustration of Algorithm 2. The gray rectangle represents the

buffer of n columns. For column 4, the above-threshold maxima are

detected in each step within the buffer. Then, the column 7 values are

accumulated into the buffer, using the space of column 2, which will

not be needed in future processing

J Real-Time Image Proc

123

The appropriate h for a point can be obtained from the

gradient of the detected edge which contains this point

[22]. The u position of the corresponding place in the TS
space, where d is distance between axes y and x (-y and x),

is linked with h :

u ¼ d

� sgn ðp=2� hÞ � arctan ðhÞ ð5Þ

so an identical approach can be taken in the case of the

PClines parameterization.

One common way to calculate the local gradient

direction of the image intensity is using the Sobel opera-

tor. Sobel kernels for convolution are as follows:

Sx ¼ ½1; 2; 1�T � ½1; 0;�1� and Sy ¼ ½1; 0;�1�T � ½1; 2; 1�:
Using these convolution kernels, two gradient values Gx

and Gy can be obtained for any discrete location in the

input image. Based on these, the gradient’s direction is

h ¼ arctan ðGy=GxÞ: The line’s inclination in the slope–

intercept parameterization m–b is related to h :

m ¼ � tan
1

h
: ð6Þ

The slope m of line ‘ defines the u coordinate of the line’s

image ‘ in the TS space: u ¼ d=ð1� mÞ for S space and

u ¼ �d=ð1þ mÞ for T space. When ‘ is in the S space,

uS ¼ d
1

1� m
¼ d

1

1þ tan h�1
¼ d

Gy

Gy þ Gx
ð7Þ

and similarly in the T space

uT ¼ d
Gy

�Gy þ Gx
: ð8Þ

The u coordinate can be expressed independently of the

location of ‘ as

u ¼ d
Gy

ðsgn GyÞ ðsgn GxÞGy þ Gx
: ð9Þ

It should be noted that contrary to the ‘‘standard’’ h�.
parameterization, no goniometric operation is needed to

compute the horizontal position of the ideal gradient in the

accumulator space. To avoid errors caused by noise and the

discrete nature of the input image, accumulators within a

suitable interval hu� r; uþ ri around the calculated angle

(or more precisely u position) are also incremented. This

unfortunately introduces a new parameter of the method—

radius r. However, experiments show that neither the

robustness nor the speed is affected notably by the

selection of r.

The dependency of u on h is not linear and thus

the radius width should vary for different u. However, the

sensitivity of the algorithm to the radius is very low and the

dependency is ‘‘close to linear’’ (see Fig. 5), so in practice,

we set a constant ‘‘radius’’ in the u coordinate in the same

way it is set for h—experiments show that this does not

cause any measurable error.

This approach for utilizing the detected gradient can be

incorporated into the new accumulation scheme presented in

the previous section. When extracting the ‘‘edge points’’ for

which the two lines are accumulated in the TS space (line 1 in

Algorithm 2), the edge inclination is also extracted:

Then, instead of accumulating all points from set P

(lines 4–6), only those points which fall into the interval

with radius w around currently processed h are processed

and accumulated into the buffer of n lines:

and similarly for lines 15–17.

It should be noted that the edge extraction phase (line

1) can sort the detected edges by their gradient inclina-

tion a; so that loops on lines 15–17 and 4–6 do not visit

all edges, but only edges potentially accumulated, based

on the current u (line 9 of Algorithm 2). For (partial)

sorting the edges on GPU, an efficient prefix sum can be

used [10].

5 Experimental results

This section presents the experimental evaluation of the

proposed algorithm. Section 5.1 briefly describes a

PClines-based algorithm for OpenGL which is used as a

reference in the measurements. Section 5.2 contains the

 0

 0.2

 0.4

 0.6

 0.8

 1

 90 100 110 120 130 140 150 160 170 180

u

theta (degrees)

dependency of u on theta

Fig. 5 Dependency of u on h: non-linear, but close to linear, so the

error in the ‘‘radius’’ is small and acceptable

J Real-Time Image Proc

123

results achieved by a CUDA implementation of the

PClines-based algorithm presented in this study compared

to other implementations/algorithms.

The following hardware was used for testing (in bold

face is the identifier used later on in this text):

GTX 480: NVIDIA GTX 480 in a computer with Intel

Core i7-920, 6 GB 3�DDR3-1066 (533 MHz) RAM;

GTX 280: NVIDIA GTX 280 in a computer with Intel

Core i7-920, 6 GB 3�DDR3-1066 (533 MHz) RAM;

HD 5970-1: AMD Radeon HD5970 (single core used)

in a computer with Intel Core i5-660, 4 GB 3�DDR3-1066

(533 MHz) RAM;

HD 5970-2: AMD Radeon HD5970 (both cores used) in

a computer with Intel Core i5-660, 4 GB 3�DDR3-1066

(533 MHz) RAM; and

i7-920: Intel Core i7-920, 6 GB 3�DDR3-1066

(533 MHz) RAM—the same computer is used for testing

the GTX 480 and GTX 280.

Fig. 6 Images used in the test. The number in the top-left corner of each thumbnail image is the image ID used on the horizontal axis in Figs. 7

and 8. The bottom-left corner of each thumbnail image states the number of edge points and pixel resolution of the tested image

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 (8k)
2 (11k)
3 (11k)
4 (12k)
5 (15k)
6 (15k)
7 (16k)
8 (17k)
9 (18k)
10 (19k)
11 (19k)
12 (20k)
13 (20k)
14 (21k)
15 (23k)
16 (24k)
17 (25k)
18 (31k)
19 (31k)
20 (33k)
21 (33k)
22 (33k)
23 (34k)
24 (36k)
25 (40k)
26 (49k)
27 (52k)
28 (53k)
29 (55k)
30 (65k)
31 (86k)
32 (90k)
33 (92k)
34 (94k)
35 (96k)
36 (97k)
37 (106k)
38 (118k)
39 (134k)
40 (158k)

tim
e

(m
ill

is
ec

on
ds

)

data (edge points)

OpenCV-i7/920
PClines-OpenGL-GTX480

PClines-OpenGL-HD5970-2
ThetaRho-CUDA-GTX480

PClines-CUDA-GTX480

Fig. 7 Performance evaluation

on real-world images (see Fig.6)

using the Sobel operator and

only accumulating an interval

on the u-axis (Sect. 4.2)

J Real-Time Image Proc

123

An evaluation of the accuracy of the PClines line

parameterization can be found in a recent paper where the

PClines parameterization was introduced [6]. The mea-

surements report that PClines are equal or more accurate

than the ‘‘standard’’ h�. parameterization.

5.1 OpenGL implementation of PClines as a reference

Contrary to the ‘‘standard’’ h�. parameterization where

sinusoids need to be rasterized into the accumulator space,

in the case of PClines, for each edge point detected in the

input image, two-line segments are rasterized. Rasteriza-

tion of line segments (and blending the rasterized pixels

into a frame buffer) is a natural task for the graphics chips.

Recently, we published a paper about an OpenGL imple-

mentation of the PClines [5]. The whole process is done by

the graphics chip, programmed in OpenGL and GLSL:

Edges are extracted by a geometry shader which

accesses a texture with the input image and, for each pixel

in the input image, it emits zero, two, or three endpoints of

a polyline to be rasterized into the TS space.

Line segments are rasterized by OpenGL and blended

into the frame buffer.

The TS space is searched by another geometry shader

which emits the parameters of detected lines.

This implementation using OpenGL and GLSL will be

used as a reference and referred to as ‘‘PClinesGL’’ in the

charts. For more information on the algorithm and its

implementation, please refer to the original paper [5].

5.2 Performance evaluation on real-life images

Two datasets were used for measuring the performance of

different algorithms. The first one was a set of real

photographs with different amounts of edge points and

different dimensions (see Fig. 6).

The images are sorted according to the number of edge

points detected by the Sobel filter. Only this limited set of

images is selected for the graphs to be readable. The

images were selected randomly from a large set of images

and they well represent the behavior of the algorithms for

all images we have observed.

The presented algorithm (referred to below as PClines–

CUDA) was compared to different alternatives:

– A software implementation of the PClines based on

a Hough transform implementation taken from the

OpenCV library2 and parallelized by OpenMP and

slightly optimized.

– A CUDA implementation of the standard h�. parameter-

ization (ThetaRho-CUDA). The arrangement of the

algorithm is very similar to the presented PClines-based

one.

– The OpenGL implementation of PClines (PClines-

OpenGL) as described in Sect. 5.1.

The results are shown in Fig. 7. The measurements verify that

the computational complexity is linearly proportional to the

number of edge points extracted from the input image and the

edge-detection phase is linearly proportional to the image

resolution. The GPU-accelerated implementations are notably

faster than the software implementation. A detailed comparison

of the GPU-accelerated implementations is shown in Fig. 8.

5.3 Performance evaluation on synthetic binary images

The second dataset consisted of automatically generated

black-and-white images. The generator randomly places L

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 (8k)
2 (11k)
3 (11k)
4 (12k)
5 (15k)
6 (15k)
7 (16k)
8 (17k)
9 (18k)
10 (19k)
11 (19k)
12 (20k)
13 (20k)
14 (21k)
15 (23k)
16 (24k)
17 (25k)
18 (31k)
19 (31k)
20 (33k)
21 (33k)
22 (33k)
23 (34k)
24 (36k)
25 (40k)
26 (49k)
27 (52k)
28 (53k)
29 (55k)
30 (65k)
31 (86k)
32 (90k)
33 (92k)
34 (94k)
35 (96k)
36 (97k)
37 (106k)
38 (118k)
39 (134k)
40 (158k)

tim
e

(m
ill

is
ec

on
ds

)

data (edge points)

ThetaRho-CUDA-GTX280
PClines-CUDA-GTX280

PClines-OpenGL-GTX280
PClines-OpenGL-HD5970-1

PClines-OpenGL-GTX480
PClines-OpenGL-HD5970-2

ThetaRho-CUDA-GTX480
PClines-CUDA-GTX480

Fig. 8 Performance evaluation

on real-world images (see Fig.6)

using the Sobel operator and

only accumulating an interval

on the u-axis (Sect. 5.2). Only

the hardware-accelerated

methods are shown here for

better clarity

2 http://opencv.willowgarage.com.

J Real-Time Image Proc

123

http://opencv.willowgarage.com

white lines in an originally black image and then inverts

pixels on P random positions in the image. The evaluation

is done on 36 images (resolution 1; 600� 1; 200): images

1–6, 7–12, 13–18, 19–24, 25–30, 31–36 are generated with

L ¼ 1; 30; 60; 90; 120; 150, respectively, with increasing

P ¼ 1; 3;000; 6;000; 9;000; 12;000 for each L. The suit-

able parameters for images of these properties were

H. = 960 and Hh = 1170 (resolution of the Hough space)

and the threshold for accumulators in the Hough space was

400. The purpose of this test was to accurately observe the

dependency of processing time on the number of lines in

the image and on the number of pixels processed as edges.

These two quantities determine the number of repetitions in

critical parts of the algorithm.

Figure 9 shows the results of the four implementations;

Fig. 10 contains a selection of the graphs—only the hard-

ware-accelerated methods. Once again, it should be noted

that all the accelerated versions are several times faster

than the commonly used OpenCV implementation and

achieve real-time or near real-time speeds even for high-

resolution inputs.

On current graphics chips, the algorithm presented here

(PClines–CUDA) and the previously published algorithm

(ThetaRho-CUDA) perform equally fast (it should be

noted that, in Figs. 8 and 10, their curves totally over-

lap). On special, embedded, and low-power architectures,

the PClines-based version may perform much better or

can be the only feasible one, because it requires no

floating-point computations and no goniometric functions

(which are cheaply available on the GPUs). The only

advantages of the PClines-based algorithm on GPU is,

therefore, its better accuracy [6] and its ability to directly

detect parallel lines and sets of lines coincident with one

point.

 0

 100

 200

 300

 400

 500

 600

 700

 800

L
1 - P0k

L
1 - P3k

L
1 - P6k

L
1 - P9k

L
1 - P12k

L
30 - P0k

L
30 - P3k

L
30 - P6k

L
30 - P9k

L
30 - P12k

L
60 - P0k

L
60 - P3k

L
60 - P6k

L
60 - P9k

L
60 - P12k

L
90 - P0k

L
90 - P3k

L
90 - P6k

L
90 - P9k

L
90 - P12k

L
120 - P0k

L
120 - P3k

L
120 - P6k

L
120 - P9k

L
120 - P12k

L
150 - P0k

L
150 - P3k

L
150 - P6k

L
150 - P9k

L
150 - P12k

tim
e

(m
ill

is
ec

on
ds

)

number of lines / inverted points

OpenCV-i7/920
PClines-OpenGL-GTX480

PClines-OpenGL-HD5970-2
ThetaRho-CUDA-GTX480

PClines-CUDA-GTX480

Fig. 9 Performance evaluation

on generated data

 0

 20

 40

 60

 80

 100

 120

 140

L
1 - P0k

L
1 - P3k

L
1 - P6k

L
1 - P9k

L
1 - P12k

L
30 - P0k

L
30 - P3k

L
30 - P6k

L
30 - P9k

L
30 - P12k

L
60 - P0k

L
60 - P3k

L
60 - P6k

L
60 - P9k

L
60 - P12k

L
90 - P0k

L
90 - P3k

L
90 - P6k

L
90 - P9k

L
90 - P12k

L
120 - P0k

L
120 - P3k

L
120 - P6k

L
120 - P9k

L
120 - P12k

L
150 - P0k

L
150 - P3k

L
150 - P6k

L
150 - P9k

L
150 - P12k

tim
e

(m
ill

is
ec

on
ds

)

number of lines / inverted points

ThetaRho-CUDA-GTX280
PClines-CUDA-GTX280

PClines-OpenGL-GTX280
PClines-OpenGL-HD5970-1

PClines-OpenGL-GTX480
PClines-OpenGL-HD5970-2

ThetaRho-CUDA-GTX480
PClines-CUDA-GTX480

Fig. 10 Performance

evaluation on generated data.

Only the hardware-accelerated

methods are shown here for

better clarity

J Real-Time Image Proc

123

Figures 8 and 10 show that, on the pre-Fermi NVIDIA

card (GTX280), the OpenGL version of the PClines-based

Hough transform performs better than CUDA. That is

because the atomic increment operation (atomicInc) in

the shared memory is not optimized on this generation of

the graphics chips. Very good results also come from

recent Radeon graphics chips (with the OpenGL version).

Figures 8 and 10 also show that the OpenGL algorithm by

Dubská et al. [5] scales well on the dual-core graphics card

Radeon HD5970. When executed on both the cores, the

speed is almost doubled compared to the single-core ver-

sion. A comparable scaling is achieved also on the CUDA

version of the algorithm. However, on CUDA, the problem

must be ‘‘manually’’ divided into an appropriate number of

blocks within the kernel. Such a division is discussed in

Sect. 4.1.

5.4 Discussion

The Fermi architecture (compared to the previous genera-

tion) speeded up the algorithm in the OpenGL version just

the amount which can be expected from the increase in the

number of the streaming multiprocessors. However, the

CUDA version presented in this study speeded up notably

more (about 4 times) on the Fermi architecture. This can be

explained by the improved atomic operations in the shared

memory, involving the new design of the L2 cache on the

GTX480 [see Fermi White Paper (2009)]. Attribution of

the performance boost between the GTX280 and GTX480

to the atomic instructions was verified by running the

 0

 5

 10

 15

 20

 25

 4 6 8 10 12 14

tim
e

(m
s)

stripe columns on GTX 480

image #1
image #10
image #20
image #30

Fig. 12 Time performance for several selected images from Fig. 6

for different configurations of the shared memory usage (i.e., number

of spare columns used by the algorithm). Note that as expected in the

algorithm design, using the whole shared memory for the accumu-

lation buffer indeed speeds the computation up. However, for high

number of blocks within the kernel, the impact of this improvement is

diminished and also, very large shared memory would not help

notably anymore (as illustrated in Figure 13). Time performance for

several selected images from Fig. 6 for different configurations of the

shared memory usage (i.e., number of spare columns used by the

algorithm). Note that as expected in the algorithm design, using

the whole shared memory for the accumulation buffer indeed speeds

the computation up. However, for high number of blocks within the

kernel, the impact of this improvement is diminished and also very

large shared memory would not help notably anymore (as illustrated

in Fig. 13)

 0

 10

 20

 30

 40

 50

 60
tim

e
(m

ill
is

ec
on

ds
)

individual images

non-atomic -- GTX480
non-atomic -- GTX280

atomic -- GTX480
atomic -- GTX280

Fig. 11 Comparison of the speed on graphics cards of two different

generations: GTX480 and GTX280. In the case of GTX480,

execution without atomic instructions (atomic add and inc were

replaced by non-atomic equivalents) is about three times faster (blue,

red). However, in the case of GTX280 (magenta, green), the

performance when using atomic instructions is about 259 slower. It

should be noted that this includes only the edge-detection part of the

algorithm. This part is the most time-consuming one and more

importantly it is much more prone to the speed of atomic instructions.

The rest of the algorithm is severely affected by the incorrect results

produced by non-atomic operations and thus their timing was omitted

 0

 10

 20

 30

 40

 50

 60

 70

 80

image #1 image #10 image #20 image #30 image #40

m
em

or
y

/ c
om

pu
te

 u
sa

ge
 %

images / shared memory config on GTX 480

Memory Bandwidth
Instructions per Clock

Fig. 13 Usage of the graphics chip in terms of memory and

computation percentual load compared to theoretical limits. Green
boxes represent percentual usage of the computational power of the

graphics board (CPI/theoretical maximum). Red boxes reflect the

usage of the theoretical memory bandwidth (effective bandwidth/

theoretical max). The graph shows five series of measurements on

five different images (selected from Fig 6); a single measurement

within the series represents one shared memory configuration, equally

as in Fig. 12

J Real-Time Image Proc

123

algorithm with the non-atomic equivalents of the incre-

ment/add instructions (Fig. 11). For weaker graphics chips

(low-power, mobile, etc.), the OpenGL ersion of the

PClines-based algorithm might be the right choice.

We evaluated several different configurations of the shared

memory as it is used by the algorithm. Namely, different

number of columns can be allocated for the circular buffer of

columns, as noted in the last paragraph of Sect. 4.1. We allo-

cated varying numbers of these columns and observed the

results in Fig. 12. Different configurations of the shared

memory also illustrate the performance of the algorithm in

terms of being computation/memory bound. We measured

instructions per cycle (1/CPI) and the effective bandwidth in

Fig. 13. These measurements indicate that the algorithm is

mostly computation bound and using the whole shared

memory helps in accessing the global memory more effi-

ciently. This behavior reflects the nature of the algorithm

which was designed to be using memory efficiently by pro-

cessing the data in stripes. This access strategy helps serialize

and minimize the accesses to the global memory.

6 Conclusions

This study presents an algorithm based on the PClines

parameterization for real-time detection of lines. The

algorithm is suitable for platforms featuring a small but fast

internal memory, while the external memory is relatively

slow and prefers sequential access. This describes many

recent acceleration platforms, DSPs, embedded devices,

but most importantly current graphics chips. The main

contribution of the study is the accumulation strategy

suitable for such architectures. It is shown that this algo-

rithm allows for real-time computation of the ‘‘full’’ Hough

transform on high-resolution images.

The measurements show that the GPU-accelerated

algorithm achieves interactive (or faster) detection times

even for images of really high resolutions. For images with

smaller resolutions, this algorithm can be used in low-

power and embedded devices; the algorithm should be also

usable for designing specialized circuitry (e.g., FPGA)

because it requires no floating-point calculation or gonio-

metric functions.

Since the PClines parameterization is a point-to-line

mapping, it can be used efficiently for detecting lines that

are mutually parallel or that are coincident with one van-

ishing point. We intend to exploit this feature for rapid

(real-time) detection of parallel lines, chessboard patterns,

and similar structures. In the near future, we also intend to

explore possibilities for implementing the algorithm in the

programmable circuitry (FPGA).

Acknowledgments This research was supported by the EU

FP7-ARTEMIS project no. 100230 SMECY, by the research project

CEZMSMT, MSM0021630528, and by the CEZMSMT project

IT4I - CZ 1.05/1.1.00/02.0070.

References

1. Atiquzzaman, M.: Pipelined implementation of the multiresolu-

tion Hough transform in a pyramid multiprocessor. Pattern Rec-

ognit. Lett. 15(9), 841–851 (1994). doi:10.1016/0167-8655(94)

90145-7

2. Ballard, D.H.: Generalizing the Hough transform to detect arbi-

trary shapes. Pattern Recognit. 13(2), 111–122 (1981)

3. Bhattacharya, P., Rosenfeld, A., Weiss, I.: Point-to-line mappings

as Hough transforms. Pattern Recognit. Lett. 23(14):1705–1710

(2002). doi:10.1016/S0167-8655(02)00133-2

4. d’Ocagne, M.: Coordonnèes parallèles et axiales. Méthode de

transformation géométrique et procèdènouveau de calcul graph-

ique dèduits de la considèration des coordonnées parallèlles.

Gauthier-Villars (1885)

5. Dubská, M., Havel, J., Herout, A.: Real-time detection of lines

using parallel coordinates and OpenGL. In: Proceedings of SCCG

(2011)

6. Dubská, M., Herout, A., Havel, J.: PClines—line detection using

parallel coordinates. In: Proceedings of the IEEE Conference

Computer Vision and Pattern Recognition (CVPR) (2011)

7. Duda, RO., Hart, PE.: Use of the Hough transformation to detect

lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972).

doi:10.1145/361237.361242

8. Eckhardt, U., Maderlechner, G.: Application of the projected

Hough transform in picture processing. In: Proceedings of the 4th

International Conference on Pattern Recognition, pp. 370–379.

Springer, London (1988)

9. Forman, A.V., Jr.: A modified Hough transform for detecting

lines in digital imagery. In: Applications of Artificial Intelligence

III, pp. 151–160 (1986). doi:10.1117/12.964124

Fig. 14 Original x–y space

(left) and its PClines

representation the

corresponding TS space (right)

J Real-Time Image Proc

123

http://dx.doi.org/10.1016/0167-8655(94)90145-7
http://dx.doi.org/10.1016/0167-8655(94)90145-7
http://dx.doi.org/10.1016/S0167-8655(02)00133-2
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1117/12.964124

10. Harris, M.: GPU Gems 3, Addison-Wesley, chap 39. Parallel

Prefix Sum (Scan) with CUDA, pp. 851–876 (2007)

11. Hough, PVC.: Method and means for recognizing complex pat-

terns. US Patent 3,069,654 (1962)

12. Inselberg, A.: Parallel Coordinates: Visual Multidimensional

Geometry and Its Applications. Springer, Berlin. ISBN: 978-0-

387-21507-5 (2009)

13. Jošth, R., Dubská, M., Herout, A., Havel, J.: Real-time line

detection using accelerated high-resolution Hough transform. In:

Proceedings of Scandinavian Conference on Image Analysis

(SCIA) (2011)

14. Li H, Lavin MA, Le Master RJ. (1986) Fast Hough transform: A

hierarchical approach. Comput. Vis. Graph Image Process. 36,

139–161. doi:10.1016/0734-189X(86)90073-3

15. Natterer, F.: The mathematics of computerized tomography.

Wiley. ISBN:9780471909590 (1986)

16. O’Gorman, F., Clowes, MB.: Finding picture edges through

collinearity of feature points. IEEE Trans. Comput. 25(4),

449–456 (1976)

17. O’Rourke, J.: Dynamically quantized spaces for focusing the

Hough transform. In: Proceedings of the 7th International Joint

Conference on Artificial Intelligence, Vol. 2, pp. 737–739.

Morgan Kaufmann Publ. Inc., San Francisco (1981)

18. O’Rourke, J., Sloan, K.R.: Dynamic quantization: Two adaptive

data structures for multidimensional spaces. IEEE Trans. Pattern

Anal. Mach. Intell. (PAMI) 6(3), 266 –280 (1984). doi:

10.1109/TPAMI.1984.4767519

19. Pavel, S., Akl, S.: Efficient algorithms for the Hough transform

on arrays with reconfigurable optical buses. In: Parallel Pro-

cessing Symposium, 1996., Proceedings of IPPS ’96, The 10th

International, pp. 697–701 (1996). doi:10.1109/IPPS.1996.

508134

20. Princen. J., Illingowrth, J., Kittler, J.: Hypothesis testing: a

framework for analyzing and optimizing Hough transform per-

formance. IEEE Trans. Pattern Anal. Mach. Intell.16(4), 329–341

(1994). doi:10.1109/34.277588

21. Rau, J.Y., Chen, L.C.: Fast straight lines detection using Hough

transform with principal axis analysis. J. Photogramm. Remote

Sens. 8, 15–34 (2003)

22. Shapiro, L.G., Stockman, G.C.: Computer Vision. Tom Robbins

(2001)

23. Sloan, K.R.: Dynamically quantized pyramids. In: Proceedings of

Teh International Joint Conference on Artificial Intelligence (IJ-

CAI), pp. 734–736. Kaufmann (1981)

24. Strzodka, R., Ihrke, I., Magnor, M.: A graphics hardware

implementation of the generalized Hough transform for fast

object recognition, scale, and 3D pose detection. In: Proceedings

of IEEE International Conference on Image Analysis and Pro-

cessing (ICIAP’03), pp. 188–193 (2003)

25. Underhill, A., Atiquzzaman, M., Ophel, J.: Performance of the

Hough transform on a distributed memory multiprocessor. Mi-

croprocess. Microsyst. 22(7), 355–362 (1999). doi:10.1016/

S0141-9331(98)00093-3

26. Wallace, R.: A modified Hough transform for lines. In: Pro-

ceedings of CVPR, pp. 665–667 (1985)

27. Xu, L., Oja, E., Kultanen, P.: A new curve detection method:

Randomized Hough Transform (RHT). Pattern Recognit. Lett.

11, 331–338 (1990). doi:10.1016/0167-8655(90)90042-Z

Author Biographies

Jiřı́ Havel received the MS degree at Faculty of Information

Technology, Brno University of Technology, Czech Republic. He is

currently a PhD student at Department of Computer Graphics and

Multimedia at FIT Brno University of Technology. His research

interests include computer graphics and functional programming and

acceleration of various algorithms.

Markéta Dubská received the MS degree at Faculty of Information

Technology, Brno University of Technology, Czech Republic. She is

currently a PhD student at Department of Computer Graphics and

Multimedia at FIT Brno University of Technology. Her research

interests include computer vision, geometry and computation using

parallel coordinates.

Adam Herout received his PhD from Faculty of Information

Technology, Brno University of Technology, Czech Republic, where

he works as an associate professor and leads the Graph@FIT research

group. His research interests include fast algorithms and hardware

acceleration in computer vision and graphics.

J Real-Time Image Proc

123

http://dx.doi.org/10.1016/0734-189X(86)90073-3
http://dx.doi.org/10.1109/TPAMI.1984.4767519
http://dx.doi.org/10.1109/IPPS.1996.508134
http://dx.doi.org/10.1109/IPPS.1996.508134
http://dx.doi.org/10.1109/34.277588
http://dx.doi.org/10.1016/S0141-9331(98)00093-3
http://dx.doi.org/10.1016/S0141-9331(98)00093-3
http://dx.doi.org/10.1016/0167-8655(90)90042-Z

	Real-time detection of lines using parallel coordinates and CUDA
	Abstract
	Introduction
	Background
	PClines: line detection using parallel coordinates
	Parameterization ‘‘PClines’’ for line detection

	Real-time line detection algorithm using PClines and CUDA
	Hough transform on a small read-write memory of accumulators
	Harnessing the edge orientation

	Experimental results
	OpenGL implementation of PClines as a reference
	Performance evaluation on real-life images
	Performance evaluation on synthetic binary images
	Discussion

	Conclusions
	Acknowledgments
	References

